Direkt zum Inhalt

Winkel und Winkelsätze | Aufgaben und Übungen

Winkel sind ein elementares Thema im Matheunterricht der 5. bis zur 13. Klasse. Zunächst lernst du, welche Arten von Winkeln es gibt und wie du sie zeichnest.

Das ist Grundlage dafür, dass du dann später Aufgaben mit Winkelsätzen und Bogenmaß lösen kannst. Aufgaben dazu gibt es zum Beispiel bei den Themen „Kreis“, „Kreisbogen“, „Mittelpunktswinkel“, „Kreisumfang“ und „Sinusfunktion“. Die Aufgaben werden auch oft in Form einer Textaufgabe gestellt.

Wie du siehst, sind Winkel ein wesentlicher Bestandteil der Mathematik, daher findest du im Folgenden Informationen zu Winkelsätzen und zu Grad- und Bogenmaß. Ausführliche Erklärungen mit Beispielen und dazu passenden Übungsaufgaben zu Winkeln findest du in unseren Lernwegen. Wenn du alle Winkelsätze beherrscht und dich auch das Bogenmaß nicht mehr schrecken kann, kannst du dich an den Klassenarbeiten versuchen.

Winkel und Winkelsätze – Klassenarbeiten

Wie erkennt man, welcher Winkelsatz angewendet werden muss?

Winkelsätze kannst du immer dann anwenden, wenn sich zwei Geraden oder ähnliche Objekte schneiden. Diese Sätze beschreiben den Zusammenhang verschiedener Winkel am Schnittpunkt der Geraden. Mit ihrer Hilfe kannst du schnell ausrechnen, wie groß fehlende Winkelgrößen sein müssen.

Es gibt 4 verschiedene Winkelsätze. Welchen du benötigst, hängt davon ab, welcher Winkel am Schnittpunkt gegeben und welcher gesucht ist.

Nebenwinkelsatz

Die Nebenwinkel am Schnittpunkt zweier Geraden

Scheitelwinkelsatz

Die beiden Scheitelwinkel am Schnittpunkt einer Geraden

Stufenwinkelsatz

Die beiden Stufenwinkel an zwei parallelen Geraden, die von einer dritten Gerade geschnitten wird

Wechselwinkelsatz

Die beiden Wechselwinkel an zwei parallelen Geraden, die von einer dritten Gerade geschnitten wird

 

In Aufgaben zu Winkelsätzen musst du immer herausfinden, welchen Winkelsatz du auf die Aufgabe anwenden kannst. Oft werden auch Scheitel- und Nebenwinkelsatz sowie Stufen- und Wechselwinkelsatz zusammengefasst.

Wie berechnet man Winkel mit den Winkelsätzen?

Beim Geometriethema „Winkel“ ist es eine typische Aufgabe, Winkelgrößen mit Winkelsätzen zu berechnen. Entweder du bekommst eine Grafik mit bestimmten vorgegebenen Winkeln oder es geht um eine Textaufgabe. Wenn du folgende Schritte ausführst, kannst du aber jede Aufgabe lösen.

  1. Finde, was in der Aufgabe gegeben und gesucht ist
    Wenn du eine Textaufgabe hast, kannst du dir alle Vorgaben markieren und daraus eine Skizze anfertigen. In der Skizze oder der Grafik kannst du auch die gesuchten Größen markieren.
  2. Suche den richtigen Winkelsatz
    Suche in der Skizze Merkmale, die du einem Winkelsatz zuordnen kannst. Hast du zwei parallele Geraden? Hast du einen Gegenwinkel gegeben?
  3. Berechne die fehlenden Winkel
    Wenn du den passenden Winkelsatz identifiziert hast, kannst du mit seiner Hilfe die gesuchten Größen berechnen.
  4. Schreibe einen Antwortsatz
    Zum Schluss schreibst du einen Antwortsatz oder markierst dein Ergebnis eindeutig.

Diese Schritte kannst du bei den interaktiven Übungen zu Winkeln und Winkelsätzen anwenden und so zur richtigen Lösung kommen.

Wie berechnet man das Bogenmaß?

Das Bogenmaß zu berechnen findet in der Mathematik oft Anwendung in Textaufgaben zu Kreisen, Kreisumfang und Kreisbogen. Auch wenn es um Mittelpunktswinkel, Vollwinkel und Verhältnisse bei Kreisgrößen geht, solltest du die Berechnung des Bogenmaßes aus dem Gradmaß beherrschen.

Wie rechnet man Gradmaß in Bogenmaß um?

Im Bogenmaß wird ein Winkel anstatt in Grad als Bruchteil des Umfangs eines Kreises mit dem Radius 1 angegeben.

Man kann sich die Beziehung auch gut in der folgenden Form merken:

\(\displaystyle \frac{\text{Kreisbogen}}{\text{Kreisumfang}} = \frac{\text{Mittelpunktswinkel}}{\text{Vollwinkel}}\)

Wie gibt man das Bogenmaß in den Taschenrechner ein?

Wenn du deine Winkel mit dem Taschenrechner ausrechnest, musst du immer aufpassen, auf welche Angaben dein Taschenrechner eingestellt ist.

  • Bogenmaß:
    Hier steht im Display, meistens oben rechts, ein kleines RAD. Das steht für Radius, da die Werte aus dem Radius eines Kreises berechnet werden.
  • Gradmaß:
    Hier steht im Display ein kleines DEG. Das steht für degree, was aus dem Englischen kommt und „Grad“ bedeutet.

Du musst wissen, welcher Modus bei dem Taschenrechner grundsätzlich eingestellt ist und wie du zwischen den Modi wechseln kannst. Diese Angaben findest du in der Bedienungsanleitung oder du drückst so lange alle Knöpfe bis du den findest, bei dem die Einstellung DEG im Display auf RAD wechselt.