Das Distributivgesetz oder Verteilungsgesetz ist ein grundlegendes Rechengesetz, das für die Verbindung von Addition und Multiplikation gilt. Es bildet die Grundlage der wichtigen Termumformungen Ausmultiplizieren und Ausklammern. Es lautet:
\(\begin{matrix} a · (b + c) &=& a · b + a · c &\text{bzw.}& a · (b\ –\ c) &=& a · b\ –\ a · c \\ (a + b) · c &=& a · c + b · c &\text{bzw.} & (a\ –\ b) · c &=& a · c\ –\ b · c \end{matrix} \)
Beispiele:
\(\begin{matrix} 3 · (4 + 5) &=& 3 · 4 + 3 · 5 &=& 12 + 15 &=& \bf{27} &=& 3 · 9 &=& 3 · (4 + 5) \\ 5 · (4\ –\ 3) &=& 5 · 4\ –\ 5 · 3 &=& 20\ –\ 15 &=& \bf{5} &=& 5 · 1 &=& 5 · (4\ –\ 3) \end{matrix} \)
Das Distributivgesetz gilt auch für bestimmte Vektor- und Matrixoperationen, z. B. für Vektoraddition und Skalarprodukt.