Direkt zum Inhalt

Was ist Ähnlichkeit?

Wenn etwas ähnlich ist, kommst du sicherlich auf den Gedanken, etwas sei gleich, oder du denkst, das sieht doch genauso aus. Doch stimmt das?

In Mathematik wirst du eine etwas andere Bedeutung von Ähnlichkeit kennenlernen, die wenig mit dem alltäglichen Umgang mit dem Wort „ähnlich“ zu tun hat.

Eine Definition für Ähnlichkeit ist, dass die Formen von zwei oder mehreren geometrischen Figuren völlig übereinstimmen (Winkel und Längenverhältnis), nur die Größe kann unterschiedlich sein.

Welche Voraussetzungen für Ähnlichkeit müssen gegeben sein? Welche Arten gibt es und wozu braucht man das eigentlich? Diese Fragen werden dir in diesem Absatz und in den Übungen des Lernwegs erläutert. Überprüfen kannst du dein Wissen mit den Klassenarbeiten zu Ähnlichkeitsabbildungen.

Ähnlichkeit

Video wird geladen...

Ähnlichkeit

Ähnlichkeit

Ähnlichkeit

Wie du die Ähnlichkeit von zueinander ähnlichen Figuren begründest

Video wird geladen...

Ähnlichkeit begründen

Ähnlichkeit begründen

Ähnlichkeit begründen

Was du wissen musst

  • Welche Voraussetzungen müssen für Ähnlichkeit gegeben sein?

    In deiner Schulzeit hast du bestimmt schon mal etwas verkleinert darstellen müssen. Genau das ist die Grundlage für die Ähnlichkeit in der Mathematik. Eine geometrische Figur wird um ein bestimmtes Verhältnis verkleinert, vergrößert, gedreht oder gespiegelt, bleibt in ihrer Form aber unverändert. Damit entsteht ein Abbild der eigentlichen Figur, das ähnlich, aber nicht gleich ist. Somit solltest du mit der zentrischen Streckung vertraut sein, um dich mit dem Thema Ähnlichkeit auseinanderzusetzen. Zusätzlich müssen die Figuren auch gleiche Winkel und Längenverhältnisse haben, damit man von Ähnlichkeit sprechen kann.

    Zwei ähnliche Dreiecke

     

  • Welche Arten von Ähnlichkeit gibt es?

    Wie bereits erwähnt: Eine ähnliche Abbildung einer geometrischen Figur kann durch die zentrische Streckung, die Punktsymmetrie oder Achsensymmetrie sowie durch die Drehung entstehen. Diese Lernwege sind jeder für sich ein eigenes Thema im Mathematikunterricht und beinhalten die Ähnlichkeit als Gemeinsamkeit. Ähnlichkeit kannst du aber auch in der dreidimensionalen Ebene wiederfinden. Geometrische Körper können ebenso vergrößert und verkleinert werden, wodurch das Abbild dem Original ähnlich aussieht.

    Zwei Parallelogramme die an einem Punkt gespiegelt sind
    Zwei unregelmäßige Vierecke, die an einer Symmetrieachse gespiegelt sind
    Ein an einem Punkt gestrecktes Sechseck

     

  • Wozu braucht man Ähnlichkeit?

    Im Alltag brauchst du die Ähnlichkeit immer, wenn du etwas anschauen willst, das zu klein oder zu groß ist, um es in seiner realen Größe gut zu erkennen. Sicherlich wirst du schon einmal dem Maßstab begegnet sein.

    Der Maßstab ist ein Faktor, um den reelle Dinge verkleinert oder vergrößert werden. Meistens findest du ihn auf Landkarten oder Gebäudezeichnungen. Flächen haben auf Landkarten dementsprechend die gleiche Form wie in der Realität, aber unterscheiden sich in der Größe. Dir wäre nicht geholfen, wenn diese Flächen nicht ähnlich wären.

    Ebenfalls wirst du z. B. bei einem Hausbau auf die mathematische Ähnlichkeit angewiesen sein. Die Handwerker erhalten auf den Zeichnungen vom Bauzeichner und Architekten präzise Anweisungen, die sie beim Bauen umsetzen müssen. Dabei zeichnen die Fachkräfte die Bestandteile nicht in ihrer richtigen Größe. Sie verkleinern sie. Die Handwerker bauen nun der Zeichnung nach ein ähnliches Abbild, in dem man später leben und arbeiten kann.

    Beim Maschinenbau oder in der Elektronikbranche ist es nicht anders. Schaltpläne zeigen, wo welches Kabel oder welche Platine eingebaut werden muss, nur nicht in der realen Größe. Bei diesem Beispiel ist es genau umgekehrt, da die eigentlichen Teile im Schaltplan vergrößert dargestellt werden.