-
Aufgabe 1
Dauer: 5 Minuten 6 PunkteBerechne jeweils den Umfang \(U\) der folgenden Figuren:
- Parallelogramm mit \(a=3\ \rm cm\), \(b=4,5\ \rm cm\)
- Drachen mit \(a=2,5\ \rm cm\), \(b=5\ \rm cm\)
- Dreieck mit \(a=3\ \rm cm\), \(b=4\ \rm cm\), \(c=5\ \rm cm\)
-
Aufgabe 2
Dauer: 5 Minuten 6 PunkteGib für jedes Viereck eine Möglichkeit an, wie sich der Flächeninhalt \(A\) berechnen lässt. Benenne jeweils die für die Berechnung erforderlichen Seiten und ihre Bedeutung (sind es Diagonalen, Höhen etc.?).
- Trapez
- Drachen
- Parallelogramm
-
Aufgabe 3
Dauer: 10 Minuten 4 Punkte- Zeichne ein Parallelogramm mit einem Flächeninhalt von \(12 \rm\ cm^2\).
- Zeichne ein Trapez mit einem Flächeninhalt von \(18\ \rm cm^2\).
-
Aufgabe 4
Dauer: 5 Minuten 3 PunkteWelches Viereck kann sowohl als Trapez als auch als Parallelogramm interpretiert werden? Begründe deine Antwort. (Eine mögliche Antwort genügt.)
-
Aufgabe 5
Dauer: 10 Minuten 4 PunkteGegeben ist das unten stehende Vieleck mit \(b=3 \ \rm{cm}\), \(c = 4\ \rm{cm}\), \(h=4,5\ \rm{cm}\) und \(U=15\ \rm cm\). Berechne \(a\) und \(A\).
-
Aufgabe 6
Dauer: 10 Minuten 5 PunkteBerechne den Flächeninhalt der farbigen Figur. Beachte die Längenangabe.
-
Aufgabe 1
Berechne jeweils den Umfang \(U\) der folgenden Figuren:
- Parallelogramm mit \(a=3\ \rm cm\), \(b=4,5\ \rm cm\)
- Drachen mit \(a=2,5\ \rm cm\), \(b=5\ \rm cm\)
- Dreieck mit \(a=3\ \rm cm\), \(b=4\ \rm cm\), \(c=5\ \rm cm\)