Mathematik
5. Klasse
‐
Abitur
Normalenvektor und Normale
Ein Normalenvektor \(\vec n\) ist dadurch definiert, dass er auf einer gegebenen Ebene , Fläche oder Gerade senkrecht steht. Wenn der Normalenvektor den Betrag 1 hat (normiert ist), nennt man ihn Normaleneinheitsvektor und schreibt \(\vec n_0\) oder \(\hat n\) . Eine Gerade in Richtung des Normalenvektors heißt Normale . Der senkrechte Abstand eines Punkts von einer Ebene oder Geraden ist die Distanz des Punkts auf der Normalen vom Schnittpunkt mit der Ebene bzw. Geraden, also dem Lotfußpunkt.
Am einfachsten berechnet man einen Normalenvektor einer Ebene mit dem Kreuzprodukt der beiden Richtungsvektoren , die dieses definitionsgemäß senkrecht auf beiden Richtungsvektoren steht.
Zugehörige Videos und Aufgaben
Registriere dich kostenlos und nutze für 2 Tage die PremiumPlus Flat mit allen Funktionen
Übungen, Klassenarbeiten und mehr testen
Jetzt 2 Tage testen
Zugehörige Klassenarbeiten
Ein Blatt DIN-A4-Papier liegt in der \(x_1\) -\(x_2\) -Ebene. Gegeben sind seine Eckpunkte \(O(0|0|0)\) , \(A(\sqrt{2}|0|0)\) , \(B(\sqrt{2}|1|0)\) und \(C(0|1|0)\) sowie der Punkt \(D(1|1|0)\) . (Als Längeneinheit (LE) wird die Länge der kürzeren Seite des DIN-A4-Blattes verwendet.) Das Blatt wird jetzt entlang der Strecke \(\overline {OD}\) gefaltet. Das Dreieck \(ODC\) bleibt dabei fest, während das Viereck \(OABD\) in das Viereck \(OA'B'D\) übergeht, das wieder in der \(x_1\) -\(x_2\) -Ebene liegt. Die Gegebenheiten sind in den folgenden Schrägbildern dargestellt. Zur Veranschaulichung kann das
Die Entwicklung der Population einer bestimmten Seevogelart in einem festgelegten Beobachtungsgebiet wird durch folgende Modellannahmen beschrieben: Die Überlebensrate der Vögel in den ersten beiden Lebensjahren wird jeweils mit \(0{,}6\) angenommen, in den späteren Lebensjahren mit \(0{,}8\) . Die erste Brut findet im 3. Lebensjahr statt, der Bruterfolg wird mit \(0{,}5\) Jungvögeln pro Elternvogel und Jahr angenommen. Die Vögel werden in 3 Altersgruppen eingeteilt, deren Anzahlen \(x_1\) : Anzahl der Jungvögel im 1. Lebensjahr (Altersgruppe 1) \(x_2\) : Anzahl der Vögel im 2. Lebensjahr
Die Lösungsvorschläge liegen nicht in der Verantwortung des jeweiligen Kultusministeriums.
Die Entwicklung der Population einer bestimmten Seevogelart in einem festgelegten Beobachtungsgebiet wird durch folgende Modellannahmen beschrieben: Die Überlebensrate der Vögel in den ersten beiden Lebensjahren wird jeweils mit \(0{,}6\) angenommen, in den späteren Lebensjahren mit \(0{,}8\) . Die erste Brut findet im 3. Lebensjahr statt, der Bruterfolg wird mit \(0{,}5\) Jungvögeln pro Elternvogel und Jahr angenommen. Die Vögel werden in 3 Altersgruppen eingeteilt, deren Anzahlen \(x_1\) : Anzahl der Jungvögel im 1. Lebensjahr (Altersgruppe 1) \(x_2\) : Anzahl der Vögel im 2. Lebensjahr