Die Buche ist ein in weiten Teilen Europas heimischer Laubbaum. Eine frisch eingepflanzte kleine Buche hat eine Höhe von \(0{,}3\text{ m}\). Ein Biologe modelliert das Höhenwachstum dieser Buche aufgrund von Messungen in den ersten Jahren nach dem Pflanzen durch die Funktion \(f\) mit der Gleichung: \(\begin{align} f(t) &= 0{,}3 + 35 \cdot ( 1-e^{-0{,}02 \cdot t})^2 \\ &= 0{,}3 + 35 \cdot (1-2\cdot e^{-0{,}02 \cdot t} + e^{-0{,}04 \cdot t});\quad t \geq 0 \\ \end{align}\) Dabei wird \(t\) als Maßzahl zur Einheit 1 Jahr, \(f(t)\) als Maßzahl zur Einheit \(1\,\text{m}\) aufgefasst. Der Zeitpunkt
Die Buche ist ein in weiten Teilen Europas heimischer Laubbaum. Ein Biologe modelliert das Höhenwachstum von Buchen durch Funktionen \(f_a\) mit der Gleichung \(f_a(t)=a \cdot (1-e^{-0,02 \cdot t})^2 ;\quad t \geq 0\) und dem Parameter \(a \geq 0\). (Die Funktion \(f_a\) ist für alle \(t \in \mathbb{R}\) definiert, wird aber nur für \(t \geq 0\) zur Modellierung verwendet.) Dabei wird \(t\) als Maßzahl zur Einheit 1 Jahr, \(f_a(t)\) als Maßzahl zur Einheit \(1\ m\) aufgefasst. Der Zeitpunkt des Keimens des Buchensamens wird durch \(t=0\) festgelegt.
Die Funktion \(f\) ist gegeben durch \(f(x) =(2-x)\cdot e^x\), \(x\in \mathbb {R}\). Die Graphen der Funktion \(f\) und ihrer Ableitungsfunktion \(f'\) sind in der Abbildung dargestellt. Die Lösungsvorschläge liegen nicht in der Verantwortung des jeweiligen Kultusministeriums.
Ein Ölfeld wird seit Beginn des Jahres 1990 mit Bohrungen in mehreren Erdöl führenden Schichten erschlossen. Die momentane Förderrate1 aus diesem Ölfeld im Zeitraum von Anfang 1990 bis Ende 2009 kann im Intervall \( [0;20]\) durch die Funktion \(f\) mit der Gleichung \(f(t)=(1020-40t) \cdot e^{0,1 \cdot t};\quad t \in \mathbb R\) modelliert werden. Dabei wird \(t\) als Maßzahl zur Einheit 1 Jahr und \( f(t)\) als Maßzahl zur Einheit 1000 Tonnen pro Jahr aufgefasst. Der Zeitpunkt \( t=0\) entspricht dem Beginn des Jahres 1990. Der Graph von \(f\) ist in der Abbildung 1 in dem für die