Bessere Noten mit Duden Learnattack Jetzt kostenlos testen
 
Lexikon Mathe

Zahlen ordnen und vergleichen

Eine wichtige Eigenschaft aller natürlichen, ganzen, rationalen und reellen Zahlen (Zahlenbereiche) ist, dass man sie immer eindeutig anordnen und vergleichen kann – man weiß immer genau, wo man sie einzusortieren hat. Etwas formaler sagt man:

Für zwei Zahlen x und y gilt immer genau eine der drei folgenden Aussagen:

  • x ist größer als y: x > y
  • x ist gleich yx = y
  • x ist kleiner als yx < y

Man kann sich dies so veranschaulichen: Zwei Zahlen liegen auf der Zahlengeraden entweder an exakter derselben Stelle (gleich), oder eine von ihnen ist rechts und die andere links (größer bzw. kleiner).

Zahlen ordnen und vergleichen - Abbildung 1

Die Vergleichszeichen (Ordnungsrelationen) sind transitiv, d. h.:
Wenn x > y  und  y > z,  dann ist   x > z  (ebenso: \(x = y\ \land\ y = z\ \ \Rightarrow \ \ x = z\)  und  \(x < y\ \land\ y < z\ \ \Rightarrow \ \ x < z\)).

Es gibt noch die folgenden weiteren Vergleichszeichen:

  • Größer (odergleich“: \(x \ge y \ \ \Leftrightarrow \ \ x > y \ \lor \ x = y\)
  • Kleiner (odergleich“: \(x \le y \ \ \Leftrightarrow \ \ x < y \ \lor \ x = y\)
  • Ungleich“: \(x \ne y \ \ \Leftrightarrow \ \ x > y \ \lor \ x<y\)

Wenn man zwei Terme mit einem Gleichheitszeichen verknüpft, bekommt man eine Gleichung, wählt man stattdessen eines der anderen Vergleichszeichen, eine Ungleichung.

Registriere dich, um den vollen Inhalt zu sehen!

VERSTÄNDLICH

PREISWERT

ZEITSPAREND

Weitere Mathethemen findest du hier

Wähle deine Klassenstufe

Weiterführende Lexikonartikel