Bessere Noten mit Duden Learnattack Jetzt kostenlos testen
 
Lexikon Mathe

Potenzfunktionen

Eine Potenzfunktion ist eine Funktion, deren Funktionsterm ein Potenzausdruck ist:

\(f\!: x \mapsto x^r \ \ (r \in \mathbb R)\)

Die Eigenschaften der Potenzfunktionen hängen davon ab, ob der Exponent tatsächlich aus ganz r gewählt wird, oder ob man sich auf natürliche, ganzzahlig negative oder rationale Exponenten beschränkt (und werden deshalb in den jeweiligen Lexikoneinträgen behandelt).

Potenzfunktionen mit einem Stammbruch im Exponenten sind die Wurzelfunktionen:

\(f(x) = x^{1/n} \equiv \sqrt[n]{x}\)

Die Funktionsgraphen der Potenzfunktionen sind entweder verallgemeinerte Parabeln (Exponent positiv) oder verallgemeinerte Hyperbeln (Exponent negativ). Nur in zwei Fällen ist der Graph eine Gerade: für r = 0 ist der Graph die horizontale Gerade y = 1 und für r = 1 die 1. Winkelhalbierende, also die Gerade y = x.

Registriere dich, um den vollen Inhalt zu sehen!

VERSTÄNDLICH

PREISWERT

ZEITSPAREND

Weitere Mathethemen findest du hier

Wähle deine Klassenstufe

Weiterführende Lexikonartikel