Bessere Noten mit Duden Learnattack Jetzt kostenlos testen
 
Drucken

Ausdrucken ist eine Flatrate-Funktion

Jetzt Flatrate buchen
Lexikon Mathe

Homogene und inhomogene Gleichungssysteme

Ein lineares Gleichungssystem (LGS) heißt homogen, wenn alle Koeffizienten auf der rechten Seite alle gleich null sind. In Matrixschreibweise (\(A\vec x = \vec b\)) bedeutet dies, dass der Vektor \(\vec b\) auf der rechten Seite gleich dem Nullvektor ist (\(\vec b = \vec 0\)). Wenn \(\vec b \ne \vec 0\), dann gibt es mindestens einen von 0 verschiedenen Koeffizienten auf der rechten Seite und das LGS ist inhomogen.

Komponentenweise (hier mit 3 Unbekannten) sieht dies so aus:

homogenes LGS  inhomogenes LGS
\(\begin{matrix} \text{(I)} &a_{11}x& +& a_{12}y&+&a_{13}z&= &0\\ \text{(II)} &a_{21}x& +& a_{22}y&+&a_{23}z&= &0\\ \text{(III)} &a_{31}x& +& a_{32}y&+&a_{33}z&= &0 \end{matrix}\)  \(\begin{matrix} \text{(I)} &a_{11}x& +& a_{12}y&+&a_{13}z&= &b_1\\ \text{(II)} &a_{21}x& +& a_{22}y&+&a_{23}z&= &b_2\\ \text{(III)} &a_{31}x& +& a_{32}y&+&a_{33}z&= &b_3 \end{matrix}\)

mit \(a_{11}, ... ,a_{33} \in \mathbb{R},\ \ b_1, b_2, b_3 \in \mathbb{R}\setminus\{0\}\).

Ein homogenes Gleichungssystem besitzt immer mindestens den Nullvektor \(\vec{x}=\vec{0}\) als Lösung, die sogenannte triviale Lösung.

Weiterführende Lexikonartikel