Bessere Noten mit Duden Learnattack Jetzt kostenlos testen
 

Wie du Gleichungen nach x auflöst


Aufgabe 

Löse die folgenden Gleichungen.

  1. \(9\cdot x + 13=76\)
  2. \(2\cdot(x-5)+121=43+x\)

Lösungsschritte für a)

\(9\cdot x + 13 = 76\)

Schritt 1: Gleichung nach x auflösen mithilfe der Äquivalenzumformung

Mithilfe der Äquivalenzumformung kannst du Gleichungen verändern, ohne dabei die Lösungsmenge zu verändern. Du stellst die Gleichung so lange um, bis die Variable (in unserem Beispiel x) alleine auf einer Seite steht. Diesen Vorgang nennt man auch "eine Gleichung nach x auflösen".
Wichtig ist, dass die beiden Terme einer Gleichung auf jeder Seite im Gleichgewicht bleiben. Du kannst dir das wie bei einer Waage vorstellen: auf beiden Seiten muss "gleich viel" dargestellt sein.
Um den Überblick zu behalten, notierst du dir auf der rechten Seite (hinter dem Strich |) welche Umformung du auf der linken Seiten durchgeführt hast.

\(\begin{align*} 9\cdot x+13&=76\qquad\quad\;\mid-13\leftarrow\text{auf beiden Seiten 13 subtrahieren}\\ 9\cdot x+13-13&=76-13\quad\mid\;\leftarrow\text{zusammenfassen}\\ 9\cdot x&=63\\ 9\cdot x:9&=63:9\qquad\mid\;: 9\leftarrow\text{auf beiden Seiten durch 9 dividieren}\\x&=7 \end{align*}\)

Hinweis

Statt \(9\cdot x\) kannst du auch \(9x\) schreiben.

Schritt 2: Probe durchführen

Um zu überprüfen, ob du richtig gerechnest hast, setzt du für die Variable die errechnete Zahl ein.

\(9\cdot7+13=76\)

Lösungsschritte für b)

\(2\cdot(x-5)+121=43+x\)

Schritt 1: Gleichungen nach x auflösen mithilfe der Äquivalenzumformung

Auch wenn eine Gleichung mehrere x enthält, machst du die gleichen Schritte wie bei Aufgabe a).

\(\begin{align*} 2\cdot(x-5)+121&=43+x\qquad\qquad\quad\mid\leftarrow\text{Klammer ausmultiplizieren}\\ 2\cdot x-10+121&=43+x\qquad\qquad\quad\mid\leftarrow\text{zusammenfassen}\\ 2\cdot x +111&=43+x\\ 2\cdot x +111-111&=43+x-111\qquad\;\mid-111\leftarrow\text{auf beiden Seiten 111 subtrahieren}\\ 2\cdot x&=43+x-111\quad\quad\;\mid-x\leftarrow\text{auf beiden Seiten x subtrahieren}\\ 2\cdot x-x&=43+x-x-111\;\;\mid\leftarrow\text{zusammenfassen}\\ 1\cdot x&=-68\\ x&=-68 \end{align*}\)

Hinweis

Statt \(2\cdot x\) kannst du auch \(2x\) schreiben.

Schritt 2: Probe durchführen

Setze dein errechnetes Ergebnis für x ein. Wenn du richtig gerechnet hast, dann steht auf beiden Seiten der Gleichung der gleiche Wert.

\(\begin{align*} 2\cdot(-68-5)+121&=43+(-68)\\2\cdot(-73)+121&=-25\\-146+121&=-25\\-25&=-25 \end{align*}\)

Lösung

  1. \(x=7\)
  2. \(x=-25\)
Registriere dich, um den vollen Inhalt zu sehen!

VERSTÄNDLICH

PREISWERT

ZEITSPAREND

Weitere Mathethemen findest du hier

Wähle deine Klassenstufe

Weitere Schritt-für-Schritt-Anleitungen findest du hier