Bessere Noten mit Duden Learnattack Jetzt kostenlos testen
 
Lexikon Mathe

Achsenabschnittsform

Die Achsenabschnittsform ist ein Spezialfall der Koordinatenform einer Gleichung zur Beschreibung von Geraden oder Ebenen. Während die allgemeine Koordinatenform einer Ebene

ax1 + bx2 + cx3 = k

lautet (bei einer Geraden wird im Wesentlichen die dritte Koordinate weggelassen, deswegen wird dieser Fall im Folgenden nicht extra behandelt), hat die Achsenabschnittsform die Gestalt

\(ax_1 + bx_2 + cx_3 = 1 \ \Leftrightarrow \ \displaystyle \frac {x_1} s + \frac {x_2} t + \frac {x_3} u = 1\)

Dabei sind die Kehrtwerte der Koeffizienten a, b und c, also die Zahlen s, t und u, die Achsenabschnitte der Ebene, also die jeweils von null verschiedene Komponente der Spurpunkte, d. h. der Schnittpunkte S, T und U der Ebene mit den drei Koordinatenachsen:

Achsenabschnittsform - Abbildung 1

Beispiel:
Die Ebene E ist durch die Achsenschnittpunkte S(4|0|0), T(0|–2|0) und U(0|0|3) gegeben.

\(\displaystyle E: \ \frac{x_1}{4} + \frac{x_2}{-2} + \frac{x_3}{3} = 1\)

 

Registriere dich, um den vollen Inhalt zu sehen!

VERSTÄNDLICH

PREISWERT

ZEITSPAREND

Weitere Mathethemen findest du hier

Wähle deine Klassenstufe

Weiterführende Lexikonartikel