Bessere Noten mit Duden Learnattack Jetzt kostenlos testen
 

Originalprüfung 2015 Analysis HT3 LK


Für jede positive reelle Zahl \(a\) sind eine Funktion \(f_a\) mit der Gleichung 
\(f_a(x)=\left(x^2+ax+1\right)\cdot\text{e}^{x},\;x\in\mathbb{R}\)
und eine Funktion \(p_a\) mit der Gleichung
\(p_a(x)=x^2+(a+2)\cdot x+a+1,\;x\in\mathbb{R}\)
gegeben. Die Graphen von \(f_{2,5}\) und \(p_{2,5}\) sind in der Abbildung unten dargestellt.

Originalprüfung 2015 Analysis HT3 LK - Abbildung 1

Es sei nun \(a\) eine beliebige positive reelle Zahl.

Aufgabe a) \((\alpha)\)

  1. Ermitteln Sie das Intervall auf der \(x\)-Achse, für das der Graph der Funktion \(p_a\) unterhalb der \(x\)-Achse verläuft.
    [Zur Kontrolle: Das gesuchte Intervall ist \(]-1 - a;-1[\).]
  2. Zeigen Sie: Es gilt \(f_a'(x)=p_a(x)\cdot \text{e}^x\) für alle \(x\in\mathbb{R}\).
  3. Bestimmen Sie die Stellen, an denen die Funktion \(f_a\) ein lokales Maximum bzw. Minimum besitzt.

(5 + 5 + 6 Punkte)

Aufgabe b)

  1. Bestimmen Sie dasjenige \(a>0\), für das die Funktion \(f_a\) genau eine Nullstelle hat.
  2. Berechnen Sie die zugehörige Nullstelle.

(5 + 3 Punkte)

Aufgabe c)

Betrachten Sie nun die Funktion \(k\) mit der Gleichung \(k(x)=\text{e}^x,\;x\in\mathbb{R}\), und die Funktion \(h_a\) mit der Gleichung \(h_a(x)=f_a(x)-k(x)=(x^2+ax)\cdot\text{e}^x,\;x\in\mathbb{R}.\)

  1. Ermitteln Sie mithilfe eines Integrationsverfahrens eine Stammfunktion der Funktion \(h_a\).
    [Zur Kontrolle: Zum Beispiel ist die Funktion \(H_a\) mit der Gleichung \(H_a(x)=(x^2+(a-2)x+2-a)\cdot\text{e}^x\) eine Stammfunktion von \(h_a\).]
  2. Berechnen Sie in Abhängigkeit von \(a\) den Inhalt \(A(a)\) der Fläche, die von den Graphen der Funktionen \(f_a\) und \(k\) eingeschlossen wird.
    [Zur Kontrolle: \(A(a)=|2-a-(a+2)\cdot\text{e}^{-a}\)]

(6 + 6 Punkte)

Aufgabe d)

Für \(a=2,5\) erhält man die Funktion \(f_{2,5}\) mit der Gleichung \(f_{2,5}(x)=(x^2+2,5x+1)\cdot\text{e}^x,\;x\in\mathbb{R}.\)

  1. Ermitteln Sie mithilfe von c) 1. eine Stammfunktion der Funktion \(f_{2,5}\).
    [Zur Kontrolle: Zum Beispiel ist die Funktion \(F_{2,5}\) mit der Gleichung \(F_{2,5}(x)=(x^2+0,5x+0,5)\cdot\text{e}^x\) eine Stammfunktion von \(f_{2,5}\).]
  2. Berechnen Sie den Inhalt der Fläche, die von dem Graphen der Funktion \(f_{2,5}\) und der \(x\)-Achse eingeschlossen wird.
    [Zur Kontrolle: Der gesuchte Flächeninhalt beträgt ungefähr 0,17 [FE].]
  3. In der Abbildung unten ist die Fläche schraffiert, die von den Graphen der Funktionen \(f_{2,5}\) und \(k\) eingeschlossen wird. Die \(x\)-Achse teilt diese Fläche.
    Berechnen Sie das Verhältnis der größeren zur kleineren Teilfläche.
    Originalprüfung 2015 Analysis HT3 LK - Abbildung 2

(4 + 6 + 4 Punkte)

Registriere dich, um den vollen Inhalt zu sehen!

VERSTÄNDLICH

PREISWERT

ZEITSPAREND

Weitere Mathethemen findest du hier

Wähle deine Klassenstufe

Weitere Abiturprüfungen findest du hier