Bessere Noten mit Duden Learnattack Jetzt kostenlos testen
 
Abiturprüfung

Originalprüfung 2015 Analysis Aufgabe 1 GK

Eine Käferpopulation besteht zu einem bestimmten Anfangszeitpunkt aus 50.000 Exemplaren. Zwar kommen jedes Jahr durch Fortpflanzung neue Käfer hinzu, gleichzeitig wird die Population aber durch natürliche Feinde dezimiert.
Die Entwicklung der Käferpopulation kann durch die folgende Funktion \(k\) beschrieben werden: 

\(k(t)=(50+25t)\cdot \text{e}^{-0,1t}\quad\text{mit}\;t \geq0\)

Dabei gilt Folgendes:

  • 1 Einheit der Funktionswerte ≙ 1000 Käfer
  • 1 Einheit der t-Werte ≙ 1 Jahr

Der Graph von \(k\) sieht folgendermaßen aus:

Originalprüfung 2015 Analysis Aufgabe 1 GK - Abbildung 1

Aufgabe 1

Berechnen Sie ohne Bezugnahme auf den Graphen von \(k\) die Extrem- und Wendepunkte des Graphen innerhalb des betrachteten Intervalls unter Zuhilfenahme der ersten Ableitung \(k'(t)=(20-2,5t)\cdot\text{e}^{-0,1t}\).
Begründen Sie das Grenzwertverhalten des Graphen für \(t \rightarrow+∞\) anhand des Funktionsterms von \(k\).

  • Punkte:  16

Aufgabe 2

Beschreiben Sie unter Verwendung der Begriffe „Populationsgröße“ und „Wachstumsgeschwindigkeit“ die Entwicklung der Käferpopulation. Deuten Sie dabei sowohl die Extrem- und Wendepunkte als auch den Grenzwert des Graphen aus Aufgabe 1. 

  • Punkte:  8

Aufgabe 3

Zeigen Sie, dass \(K\) mit \(K(t)=(-250t-3000)\cdot\text{e}^{-0,1t}\) eine Stammfunktion von \(k\) ist. Berechnen Sie den Wert von \(\frac{1000}{30}\cdot\int\limits_{20}^{50} k(t)\text{d}t\) und deuten Sie diesen im Sachzusammenhang.

  • Punkte:  8

Aufgabe 4

Die Funktion \(k\) beschreibt die Entwicklung der Käferpopulation nur für die ersten 55 Jahre recht gut. Ab dem Zeitpunkt \( t = 55\) bleibt bei einer verbesserten Beschreibung die zu diesem Zeitpunkt erreichte Wachstumsgeschwindigkeit konstant, sodass für \(t > 55\) ein lineares Wachstum vorliegt.
Berechnen Sie die momentane Wachstumsgeschwindigkeit bei \( t = 55 \) und bestimmen Sie mithilfe der Funktionsgleichung, die ab diesem Zeitpunkt die Populationsgröße beschreibt, den voraussichtlichen Zeitpunkt des Aussterbens der Käferpopulation.

  • Punkte:  8
Registriere dich, um den vollen Inhalt zu sehen!
Deine Vorteile
  • Bessere Noten mit über 15.000 Lerninhalten in 9 Fächern
  • Originalklassenarbeiten, Musterlösungen und Übungen
  • NEU: Persönliche WhatsApp-Nachhilfe

VERSTÄNDLICH

PREISWERT

ZEITSPAREND

Next

Weitere Mathethemen findest du hier

Wähle deine Klassenstufe

Weitere Abiturprüfungen findest du hier